The DFLU flux for systems of conservation laws
نویسندگان
چکیده
The DFLU numerical flux was introduced in order to solve hyperbolic scalar conservation laws with a flux function discontinuous in space. We show how this flux can be used to solve certain class of systems of conservation laws such as systems modeling polymer flooding in oil reservoir engineering. Furthermore, these results are extended to the case where the flux function is discontinuous in the space variable. Such a situation arises for example while dealing with oil reservoirs which are heterogeneous. Numerical experiments are presented to illustrate the efficiency of this new scheme compared to other standard schemes like upstream mobility, Lax-Friedrichs and Force schemes. Key-words: Finite volumes, finite differences, Riemann solvers, system of conservation laws, flow in porous media, polymer flooding. This paper is published in the Journal of Computational and Applied Mathematics 247 (2013) 102-123. ∗ This work was partially supported by the Indo-French collaboration project IFCPAR/CEFIPRA 3401-2. † TIFR-CAM, PB 6503, Chikkabommasandra, Sharadanagar, GKVK PO Bangalore-560065, India ‡ [email protected] § [email protected] ¶ INRIA, BP 105, 78153 Le Chesnay Cedex, France ‖ [email protected] Le flux DFLU pour les systèmes de lois de conservation Résumé : Le flux numérique DFLU a été introduit pour résoudre des lois de conservation scalaires hyperboliques dont la fonction de flux est discontinues en espace. Nous montrons comment ce flux peut être utilisé pour résoudre une certaine classe de systèmes de lois de conservation tels que les systèmes modélisant l’injection de polymères en ingéniérie de réservoirs pétroliers. En outre, ces résultats s’étendent au cas de fonctions de flux discontinus par rapport à la variable d’espace. Une telle situation apparaît par exemple quand on considère des réservoirs pétroliers qui sont hétérogènes. Des expériences numériques sont présentées pour illustrer l’efficacité de ce nouveau schéma comparé à d’autres shémas standard tels que les schémas Mobilités Amont, Lax-Friedrichs et Force. Mots-clés : Volumes finis, différences finies, solveurs de Riemann, systèmes de lois de conservation, écoulements en milieu poreux, injection de polymères. The DFLU flux for systems of conservation laws 3
منابع مشابه
Applications of the DFLU flux to systems of conservation laws
The DFLU numerical flux was introduced in order to solve hyperbolic scalar conservation laws with a flux function discontinuous in space. We show how this flux can be used to solve systems of conservation laws. The obtained numerical flux is very close to a Godunov flux. As an example we consider a system modeling polymer flooding in oil reservoir engineering. Key-words: Finite volumes, finite ...
متن کاملThe comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملSelf-similar solutions of the Riemann problem for two-dimensional systems of conservation laws
In this paper, a new approach is applied to study the self-similar solutions of 2×2 systems of nonlinear hyperbolic conservation laws. A notion of characteristic directions is introduced and then used to construct local and smooth solutions of the associated Riemann problem
متن کاملGradient Driven and Singular Flux Blowup of Smooth Solutions to Hyperbolic Systems of Conservation Laws
Abstract. We consider two new classes of examples of sup-norm blowup in finite time for strictly hyperbolic systems of conservation laws. The explosive growth in amplitude is caused either by a gradient catastrophe or by a singularity in the flux function. The examples show that solutions of uniformly strictly hyperbolic systems can remain as smooth as the initial data until the time of blowup....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Computational Applied Mathematics
دوره 247 شماره
صفحات -
تاریخ انتشار 2013